Modified Crank-Nicolson Difference Schemes for Nonlocal Boundary Value Problem for the Schrِdinger Equation

نویسندگان

  • Allaberen Ashyralyev
  • Ali Sirma
  • Leonid Berezansky
چکیده

The nonlocal boundary value problem for Schrödinger equation in a Hilbert space is considered. The second-order of accuracy r-modified Crank-Nicolson difference schemes for the approximate solutions of this nonlocal boundary value problem are presented. The stability of these difference schemes is established. A numerical method is proposed for solving a one-dimensional nonlocal boundary value problem for the Schrödinger equation with Dirichlet boundary condition. A procedure of modified Gauss elimination method is used for solving these difference schemes. The method is illustrated by numerical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical schemes for the simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions

This paper adresses the construction and study of a Crank-Nicolson-type discretization of the two-dimensional linear Schrödinger equation in a bounded domain Ω with artificial boundary conditions set on the arbitrarily shaped boundary of Ω. These conditions present the features of being differential in space and nonlocal in time since their definition involves some time fractional operators. Af...

متن کامل

Finite Difference Methods for the Wide-angle ‘parabolic’ Equation

We consider a model initial and boundary value problem for the wide-angle ‘parabolic’ equation Lur = icu of underwater acoustics, where L is a second-order differential operator in the depth variable z with depthand range-dependent coefficients. We discretize the problem by the Crank–Nicolson finite difference scheme and also by the forward Euler method using nonuniform partitions both in depth...

متن کامل

Comparison of The LBM With the Modified Local Crank-Nicolson Method Solution of Transient Two-Dimensional Non-Linear Burgers Equation

Burgers equation is a simplified form of the Navier-Stokes equation that represents the non-linear features of it. In this paper, the transient two-dimensional non-linear Burgers equation is solved using the Lattice Boltzmann Method (LBM). The results are compared with the Modified Local Crank-Nicolson method (MLCN) and exact solutions. The LBM has been emerged as a new numerical method for sol...

متن کامل

Crank-nicolson Finite Element Discretizations for a 2d Linear Schrödinger-type Equation Posed in a Noncylindrical Domain

Motivated by the paraxial narrow–angle approximation of the Helmholtz equation in domains of variable topography that appears as an important application in Underwater Acoustics, we analyze a general Schrödinger-type equation posed on two-dimensional variable domains with mixed boundary conditions. The resulting initialand boundary-value problem is transformed into an equivalent one posed on a ...

متن کامل

A Closed-Form Solution for Two-Dimensional Diffusion Equation Using Crank-Nicolson Finite Difference Method

In this paper a finite difference method for solving 2-dimensional diffusion equation is presented. The method employs Crank-Nicolson scheme to improve finite difference formulation and its convergence and stability. The obtained solution will be a recursive formula in each step of which a system of linear equations should be solved. Given the specific form of obtained matrices, rather than sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009